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Comparing estimates of North American biospheric carbon flux from process-
based models:  New tools for understanding differences in predictions
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Variable Selection and Regression 
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Environmental Parameter Source 
E nhanced  vege ta tion  index, E V I M O D IS  

N orm a lized  d iffe rence  vege ta tion  index, N D V I M O D IS  
F raction  absorbed  photosyn the tica lly active  rad ia tion , fP A R  M O D IS  
Leaf a rea index, LA I M O D IS  
N et short-w ave  rad ia tion , SW R , W /m 2 N O A A   
fP A R *netSW R , W /m 2  M O D IS  
E vapo transp ira tion , E vap , g /m 2 N O A A   
P rec ip ita tion , m m /day G E O S -D A S  
N ear su rface a ir tem pera tu re , T em p, C  G E O S -D A S  
S o il m o is tu re , S M , kg/m 2 N O A A   
Q 10  ca lcu la ted  
P ercen t crop  land , % C L  IG B P  

P recen t evergreen  need le leaf, % E V N L  IG B P  
P recen t grass land , % G L  IG B P  
P ercen t m ixed  deciduous and  b road leaf fo rests , % M XD B L  IG B P  
P recen t sh rub land, % SH L  IG B P  

Funding for this work was provided by NASA through the 
ROSES A.6 NACP program, Grant No. NNX06AE84G.  Data 
suppliers include NASA MODIS for NACP, NOAA GLDAS, 
GEOS-DAS, International Geosphere Biosphere Porgram 
(IGBP) land cover classification, the World Wildlife Fund 
land cover classification, Transcom 3 Continuous, Carbon-
Tracker, and Ian Baker.   

The Variance Ratio Test (VRT) (Kitanidis et al 1997) was used to assess the correla-
tion of modeled NEE to a set of environmental variables commonly associated with 
flux or used as driving variables in forward models.

 ( )( )11 1 1 1T T TWSS
−− − − −= −y Q Q X X Q X X Q   y

 

Order of Selection in Variance Ratio Test 

Environmental 
Variable S iB  3 .0  C A S A  

C A S A  
G FE D v2 N E P  

C A S A  
G FE D v2 

N E C B  
E V I         

N D V I 9        
fP A R  4  9  10  11  
LA I 11  8  12    

ne tSW R  10   11  9  
fP A R *netSW R  5   9  10  

E vap 2  1  2  3  
P rec ip    10  8  8  
T em p 7  7  7  7  

S M          
Q 10 8  5      
C P L   4  4  4  

E V N L 6  3  3  2  
G L   6  5  5  

M X D F  1  2  1  1  
S H L 3    6  6  

The spatial aggregation of fluxes to spatially contiguous regons with similar land cover or 
biome types and climatic conditions allows for the examination of regional differences 
among the models by applying a common mask to the modeled output. 

(-) refers to a removal of CO2 from the atmosphere
(+) refers to a release of CO2 to the atmosphere
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(+) indicates the variable is 
corerelated with an overall 
source or release of carbon.

(-) indicates the variable is corre-
lated with an overall net sink.

The annual net contribution (Xβ) to NEE in 
PgC/yr is shown on the right. Evapotranspiration, 
land cover, and net short-wave radiation appear 
to have a strong corrletion to NEE among the 
models examined.

• Analysis shows that even when models produce similar estimated seasonal cycles of NEE 
when aggregated spatially to North America, they do not agree on the overall net contribution 
(source or sink) of North America (or ecoregions) to the overall carbon budget.  In addition, neu-
tral biosphere assumptions (e.g., SiB 3.0) make it difficul to compare net sources/sinks.

• Although there are similarities in the general trend or pattern of NEE variability in space, the 
magnitude of modeled NEE variability over smaller spatial scales varies, and these differences 
are seem more strongly in the dormant versus the growing season.

• The regression methods applied here indicate low linear correlation of NEE to common cli-
matic and environmental factors (e.g., precipitation, temperature, soil moisture) typically 
thought to control NEE. This does not mean these factors are not dominant drivers in the 
models examined, but rather other controls within the models introduce substantial spatial 
variability.

• The approach presented here allows for the better identification of spatial dissagreements 
among model estimates of NEE and a more rigorous means of assessing the apparent correla-
tion of multiple environmental factors on modeled NEE.

where n is the number of biospheric model estimates of NEE, p is the number of component 
variables in X0 and q is the number of additional component variables in X1.  The v statistic fol-
lows an F distribution with q and n-p-q degrees of freedom.  The VRT was conducted in similar 
manner as in Gourdji et al. 2008.

A number of biospheric or process-based models have been developed to estimate the mag-
nitude of carbon sources and sinks across regional and continental scales.  These models vary 
in complexity and tend to include a diverse array of processes that operate on widely differ-
ent spatial and temporal scales.  Both the complexity of the system being modeled, as well as 
the inherent differences among the various modeling approaches have made comparisons 
of model-derived net ecosystem eschange (NEE) difficult.  However, with the lack of direct 
observations of NEE at the scales of model estimation, there is no way to validate model-
derived NEE; thus model inter-comparisions are a necessary means to assesss model perfor-
mance, as well as evaluate our understanding of the terrestrial carbon cycle system. 

The objective ot this study was to apply a set of aggregation, spatial analysis, and regression 
tools in an inter-comparison of biospheric model estimates of NEE.  The goal was to develop 
an approach for comparing model results in light of the inherent differences among the 
models in terms of their formulation and driving variables.  The subset of biospheric models 
examined in this analysis (SiB 3.0, CASA, and CASA GFEDv2) were chosen because (1) they are 
widely cited and used to study land-atmosphere carbon exchange and (2) these models are 
commonly incorprated as a priori information in Bayesian inverse modeling set-ups used to 
estimate surface fluxes.  There is growing awareness of the strong influence of explicit prior 
flux estimates on the inferred magnitude and spatial distribution of surface fluxes in inver-
sions. 

The approach is fourfold: 

 (1) Highlight regions where models exhibit significant differences in the magnitude and 
       seasonal cycle of NEE estimates by spatially aggregating modeled NEE to the entire 
       North American domain, as well as six dominant ecoregions.

 (2) Quantify the degree of overall spatial variability of modeled monthly NEE across North
       America within a geostatistical framework.

 (3) Using variable selection methods, attribute the variability in model estimated NEE to
       those underlying environmental variables that are most significant in explaining the 
       spatial trend of fluxes at regional scales.

 (4) Quantify the influence of these environmental variables on modeled NEE through the 
       use of universal kriging, a geostatistical form of multi-linear regression that accounts
       for the spatial correlation in the portion of the flux not explained by the 
       environmental variables.

Models Examined: 

 SiB 3.0 (Sellers et al. 1996, Baker et al.  2008);  CASA, (Potter et al.  2003, Randerson et al.
 1997) and CASA GFEDv2 (van der Werf et al. 2004, 2006) with (NECB) and without (NEE)
 fire emissions.

Study period: 2002-2003
Domain: 10N to 70N, 50W to 170 W 
Spatial resolution: 1 degree X 1 degree
Temporal resolution: monthly

 

Quantifying Spatial Variability using Variograms

Grouped biome classification based on Olson et al. 2001 and the World Wildlife Fund: 
 \\SASQUATCH\DATA\ecoregions\version_2\new_version\wwf_terr_ecos.shp 

By comparing model results annually and seasonally over different ecosystem types, regions or biomes can be highlighted where 
differences in the model formulation and assumptions result in large variations in their estimates of NEE.  These differences 
cannot be seen when fluxes are only examined at the scale of North America, as differences between models become masked by 
aggregation to larger regions.  Therefore, examining modeled NEE over smaller regions, linked to ecosystem type and climatic 
conditions, can be a first step in identifying factors in the model that may be driving these differences.
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Ordinary Least Squares (OLS) was used to fit monthly spatial cova-
riance parameters to an exponential semi-variogram model for 
each biospheric model’s estimate of NEE.

Comparing Spatial Variability Across Models

where
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Boreal Forests & Tundra
Temperate Broadleaf & Mixed Forests
Temperate Coniferous Forests
Temperate Grasslands, Savannas & Shrublands
Desert & Xeric Shrublands
Tropical & Subtropical

Measure of variability between two points 
as a function of separation distance. The 
closer in space two points are, the greater 
their correlation.

Monthly Experimental Variogram

 β ε= +y X  

 

β = X TQ −1X( )−1
X TQ −1y  

 

V β = X TQ −1X( )−1

Geostatistical Regression Analysis

All models tend to estimate much 
smoother patterns of NEE in the 
winter months (longer l and and 
smaller σ2) and much more variability 
in NEE during the growing season. 

Exponential 
Variogram

Monthly averaged data were used to assess the 
annual relationship of NEE to the envrionmental 
variables in the above table.  The order in which a 
given environmental variable is selected during 
the VRT in an indication of the strength of its cor-
relation with model estimates of carbon flux.  
Evapotranspiration and mixed deciduous, broad-
leaf forests were consistently selected in the first 
rounds of variable selection, followed by crop-
lands and other land cover classifications. 

The magnitude and spatial distribution of the 
different model estimates of NEE (y) are repre-
sented as a the linear combination of selected 
environmental variables (Xβ) and their associ-
ated weights (β) and uncertainty (Vβ):

The VRT tests the statistical significance of correlations and therefore avoids indentifying vari-
ables with only a spurious relationship to flux.  The meaure of fit or correlation between mod-
eled NEE (y) and the environmental variables (X) is defined by the Weighted Sum of Squares 
(WSS), where Q is defined using the optimized covariance parameters defined by variogram 
analysis:

The use of variogram analysis allows for the quantifi-
cation and comparison of overall spatial variability 
among NEE predicted by the different models.  In ad-
dition, it is a valuable tool for highlighting differences 
in the spatial pattern of modeled NEE that may not 
be evident from qualitative or visual assessments.

h0 provides a common metric with which to com-
pare the overall spatial variability of the models 
(Alkahed et al. 2008).  Both a higher regional variance 
(σ)2 and a shorter correlation range parameter (l) will 
result in a shorter h0 indicating a greater degree of 
spatial variability of modeled NEE over smaller spa-
tial scales.


