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Site-level model-measurement
synthesis: Objectives

Starting at the spatial scale of individual sites,
establish quantitative framework that allows
NACP investigators to answer the question:

—  “Are the various measurement and modeling
estimates of carbon fluxes consistent with each
other - and if not, why?”

Improve quantification of uncertainty for
forward models and site-based measurements.

|dentify strengths and weaknesses in models
and measurements.

Migrate new knowledge up-scale in
coordination with regional and continental-
scale efforts.



Approach

Anchor the comparison at flux measurement
sites
— Multiple years of energy, water and carbon fluxes
— Ancillary physical and biological measurements
(“template” exists, encourage site Pls to fill it in)
Introduce additional data sources as available.

Measurement teams produce their own best
estimates of fluxes and flux uncertainty at each
site.

Modeling teams produce their own best
estimates of fluxes and flux uncertainty at each
site for each model.

Evaluate overlap (or lack thereof) in confidence
iIntervals to answer main science question: are
the measurements and model predictions
different?



Approach (cont.)

 Measurement — modeling synthesis

— Multiple teams tackliong several aspects of model-
data comparison in parallel.

— Initial focus on measurement uncertainty

— Teams have flexibility to introduce additional
statistical methods in the analysis, as needed.

— Evaluation at multiple time scales:
Multi-year annual mean
Interannual variability
Seasonal
Synoptic
Diurnal
— Workshop to initiate analysis



Current Status

« Sites
— 306 first-priority sites
— 11 second-priority sites (chronosequences)

— 11 third-priority sites (incomplete ancillary
data)

* First-priority sites: representation by veg
type:

— CRO(5), GRA(4), DBF(7), ENFB(4), ENFT(6),
MF(3), WSA(1), SHR(1), TUN(2), WET(3)
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Participating Models

- BEPS « DNDC
« CNCLASS  SiBCrop

. ISOLSM * can-ibis e Results from 20
- TECO * EDCM models
° ecosys C ORCH'DEE

« SIBCASA *LPJ

 SiB  BIOME-BGC
« DLEM » SSIB2

« ED2  TRIPLEX

e ~]10 simulations
per site

- LOTEC DA * AgrolBIS




Flux measurement uncertainties

 Must consider both random and systematic uncertainties

e Systematic: here, consider effect of processing
algorithms (other sources: advection, possibly energy
balance closure, etc.)

— Evaluate by comparing processing methods (e.g., u™ threshold,
gap filling algorithm, NEE/GPP/RE partitioning algorithm)

— Gap filling uncertainty: across an ensemble of methods, + 30 g C
m-2 y-1 (95% Cl, based on reanalysis of Moffat et al. 2007
results) at annual time step; + 15% at half hourly time step

— Flux partitioning: across an ensemble of methods, + 10% for
annual GPP, £ 15% for annual RE (95% ClI, based on reanalysis of
Desai et al. 2008 results); at half-hourly time step, algorithmic
uncertainty is (approximately) a similar percentage of the
estimated flux



Random uncertainties

Main source: turbulence sampling errors _ oncat |
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Random Uncertainty in Net Ecosystem Exchange

(following Richardson et al. 2008, in comparison
with NEEHat from the FCRN gap-filling method)
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Random Uncertainty (95% CI) in Measured Annual

Net Ecosystem Production vs. NEP
(following Richardson et al. 2008, NACP synthesis sites, FCRN gap-filling)
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Random Uncertainty (95% CI) in Measured Annual

Net Ecosystem Production vs. Ecosystem Respiration
(following Richardson et al. 2008, NACP synthesis sites, FCRN gap-filling)
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Bootstrapping Estimates of Uncertainty (95% ClI)
in the Nighttime Low-u*-Threshold

(NACP synthesis sites, annual analysis)
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Sensitivity of Annual Net Ecosystem Production

to Uncertainty in the u*-Threshold
(NACP synthesis sites, FCRN gap-filling, annual u* threshold)
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NEE umol CO2 m’s™

Multi-model comparison: diurnal cycle
(Howland)
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NEE umol CO2 m*s’

Multi-model comparison: diurnal cycle
(Howland, with model 95%Cl)
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NEE (umolm™2s™)

Multi-model comparison: diurnal cycle
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Multi-model comparison: diurnal cycle
(Howland growing season mean)
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Re (umol m™ s'1)

Multi-model comparison: diurnal cycle
(Howland growing season mean)
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Multi-model comparison: seasonal cycle
(Howland, NEE)
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Multi-model comparison: seasonal cycle
(Howland, GPP)
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Multi-model comparison: seasonal cycle
(Howland, Re)
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Seasonal cycle NEE, multiple sites
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Conclusions

We're about 50% of the way to a
publishable analysis

Building a valuable data and analysis
resource for the broader community

Highlighting many data and model quality
Issues along the way

Better understanding of measurement
uncertainty than model uncertainty



Conclusions (cont’'d)

* Multi-model ensemble provides a useful
way to analyze the structural component
of model uncertainty

* Next steps:
— Introduce disturbance history
— Finalize measurement uncertainty analysis
— Model parrameterization uncertainty



Uncertainty at Diurnal Time Scale
Mead rain-fed corn-soy rotation site (Nebraska)
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Conclusions

» Site Synthesis 1s a powerful
dataset for model evaluation and
Improvement

* Many possibilities. ..




