Net Ecosystem Production and Organic Carbon Balance of U.S. East Coast Estuaries

The present study is part of the Coastal Carbon Synthesis Activity coordinated jointly by the Ocean Carbon
and Biogeochemistry Program (OCB) and the North American Carbon Program (NACP), aimed at
synthesizing individual small-scale studies across broader spatial and temporal scales in order to develop
carbon budgets for the coastal regions of North America, which is a vital step towards improving the overall
understanding of the role of the coastal zone in the global carbon cycle.

We present organic carbon budgets for the estuaries of the eastern U.S., focusing on net ecosystem
production (NEP) as a key process. Statistical models were developed for NEP and burial in the sediment,
whereas riverine input was taken from a data-constrained USGS statistical water quality model. Export of
organic carbon to the coastal ocean was computed by difference, assuming steady state.

Our results indicate that the U.S. East Coast estuaries are net heterotrophic, respiring between 0.61 and 2.5
TgC yr'in excess of primary production, with the maximum likelihood NEP estimate (MLE) of -1.9 TgC yr'.
Approximately 3.4 TgC yr' are delivered to the estuaries in river inflow. Between 0.60 and 2.2 TgC yr' are
buried in the sediment, with MLE of 0.95 TgC yr'. Estimates of carbon export from the estuaries to the
coastal ocean range from -0.74 TgC yr' (import to estuaries) to 1.9 TgC yr1, with MLE of 0.63 TgC yr".

Coastal regions cover a small fraction of the earth’s surface yet play a major role in the global carbon cycle
because coastal rates of carbon fixation, remineralization, and burial tend to be much higher than the global
averages. In the estuarine systems, riverine loadings of nutrients and carbon are not delivered directly to the
coastal ocean but first undergo transformations in the estuaries; thus, NEP is an important component of the
overall coastal carbon budget because it regulates the fluxes of nutrients and carbon from land to the coastal
ocean. NEP is the gross primary production minus community respiration, and thus describes the net
metabolic status of a given system: the systems where NEP is positive are net autotrophic (i.e., a net source
of organic carbon) and the systems where NEP is negative are net heterotrophic (i.e., a net sink of organic
carbon).

A box-model view of a hypothetical estuarine system adopted in this
study is illustrated in Fig. 1, where the major fluxes across the box
boundaries are input from land (/), export from the estuary to the
shelf (E), and burial in the sediment (B); the net ecosystem
production (NEP) is the internal source term.

Fig. 1. Estuarine organic carbon balance.
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A simplifying assumption was made that the organic carbon input to estuaries is dominated by riverine
fluxes; thus, a limitation of our analysis is that it does not explicitly include organic carbon input form tidal
wetlands.
* To constrain riverine input of organic carbon we used riverine total organic carbon (TOC) load estimates
from the USGS SPARROW water quality model (Spatially Referenced Regression on Watershed Attributes;
Smith et al.,1997; Shih et al., 2010).
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Fig. 3 Estimated riverine loadings of TOC from SPARROW.

GOM (0.42), and MAB (0.32).

NEP has been shown to correlate with the ratio of riverine inputs of dissolved inorganic nitrogen (DIN) to

total organic carbon (TOC) (Kemp and Testa, 2011).

DIN fuels photosynthesis and pushes the system

towards net autotrophy, while TOC fuels decomposition and pushes the system towards net heterotrophy.

We assembled a database of existing NEP estimates and developed an algorithm based on statistical
modeling of NEP as a function of DIN:TOC loading ratios (Ry.7oc) t0 scale up sparse local NEP estimates
to regional scales (Fig. 4).
Rpontoc estimates were derived using TOC fluxes from SPARROW and DIN fluxes that were calculated by
combining the available SPARROW total nitrogen (TN) flux output with the range of DIN to TN ratios
(Rpnmy) that we estimated using TN and DIN concentration measurements from USGS monitoring stations.
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Fig. 4 (a) The statistical model of NEP vs. R . (b) PDFs of model

parameters, with 95% confidence intervals shown as dashed lines
(derived using 10,000 bootstrap samples).

Fig. 5 Summary of sub-regional point estimates of
integrated riverine input (DIN, TN, TOC) and loading ratios
(R and Ry

Ry ranged from 0.06 to 0.8, with the point estimate (ratio of regional mean DIN and TN fluxes) for the
U.S. East Coast of 0.4. Sub-regional point estimates decreased slightly form north to south (Fig. 5),
indicating increased inputs of organic material towards the south (consistent with integrated TOC input).
Rpnroc ratios ranged from <0.01 to 0.5, with the regional East Coast point estimate of 0.05. SAB had the
lowest ratios, not exceeding 0.05, with the sub-regional point estimate of 0.03 (Fig. 5). In both GOM and
MAB, we found several EDAs where the ratios reached up to 0.5, but while the central tendency in GOM
(point estimate of 0.04) was close to the SAB value, the MAB distribution was centered on a substantially
higher value of 0.10. The latitudinal pattern of Rp,.7oc followed the latitudinal variation in integrated DIN
(and TN) input, with the maximum in MAB, rather than TOC, which increased from north to south (Fig. 9).

(-3.75), and MAB (-1.14).
Spatial variability of sub-regional NEP estimates followed the latitudinal variation of TOC inputs (Fig. 9).

ntegrated NEP for the East Coast was -1.9 TgC yr'!, with 95% confidence interval (-2.5, -0.61) TgC yr™.
ntegrated NEP estimates were the lowest in SAB (most heterotrophic) and increased towards the north.
Per unit estuary surface area, the lowest NEP fluxes were in SAB (-9.2 molC m? yr), followed by GOM
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« There are very few direct estimates of carbon burial in estuaries but factors controlling the cycling of
nitrogen are reasonably well understood. Nixon et al. (1996) showed that the rates of estuarine
denitrification and TN export were linked to estuarine water residence time (t), suggesting that TN burial is
also dependent on residence time.

« We used t, TN export, and denitrification data from Nixon et al. (1996) to develop a regression model of
TN burial as a function of t (Fig. 6). The model was then used to estimate carbon burial from t estimates
(Fig. 7) and an assumed burial C:N ratio of 10.

» tforthe study area (Fig. 7), were calculated as: 7 =V/Q(1- S5 /Socy ) , Where Vis the volume, Q is the
net freshwater input, Sgqr IS the average salinity of the estuary, and S, Is the average salinity on the
adjacent shelf; we used river inflow form SPARROW and all other parameters from Bricker et al. (2007).
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Fig. 8 Organic carbon balance for the U.S. East Coast estuaries in TgC yr'.
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Fig. 9 Relative contribution of the sub-regions to the U.S. East Coast organic carbon fluxes.
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