
Table 1. Vegetation parameter values for temperate 
deciduous trees in baseline and optimized LM3V models vs. 
observations. Leaf and fine-root allocation are NPP 
fractions. VCmax is maximum photosynthetic rate (µmol CO2 
m−2 s−1) at 15°C. Observations of leaf and fine-root 
allocation are biometric estimates from Luyssaert et al. 
(2007). VCmax observations are from Kattge et al. (2009).  

Optimized fine-root allocation is too high, as expected from the Errors-in-X problem. 
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Model-data fusion bias 

• There is a growing effort to test and improve C-cycle models with a 
variety of data sources. 

• The standard approach to parameter optimization is to minimize the 
discrepancy between model output and observations; e.g., minimize 
the sum of squared deviations. 

• This approach is biased if there are errors in the meteorological, soil, or 
other variables used to drive the C-cycle model. To see why, consider 
the well-known “Errors-in-X” problem… 

Demonstration with the GFDL LM3V global land model and 
forest inventory data (U.S. Forest Service FIA plots) 

• We quantified the response of aboveground wood growth in LM3V 
(Shevliakova et al. 2009) to climate and soil variables. 

• We compared these LM3V responses to FIA responses estimated with: 
1) OLS models that ignore Errors-in-X, and  
2) Measurement Error Models (MEMs; Fuller 1987) that account for 

Errors-in-X. 
• We also optimized LM3V vegetation parameter values using a standard 

optimization approach that ignores Errors-in-X. 

Figure 2. Growth in 60-80 year-old FIA plots (grid-cell mean) and 70 
year-old LM3V vegetation (temperate-deciduous-tree functional type). 

Source Leaf allocation Fine-root allocation VCmax 

LM3V-baseline 0.52 0.25 40 

LM3V-optimized 0.264 (CI: 0.249-0.279) 0.466 (CI: 0.459-0.472) 17.7 (CI: 16.9-18.4) 

Observations 0.28 (range: 0.24-0.35) 0.36 (range: 0.22-0.44) 40.7 (CI: 39.2-42.2) 

The Errors-in-X problem 
Errors in explanatory variables (X) bias statistical analyses that ignore 
these errors, whereas errors in response variables (Y) cause uncertainty 
but no bias. 
 
 
 
 
 
 
 
Figure 1. Distribution of estimated slopes from 1000 ordinary least 
squares (OLS) regressions of randomly generated data with a true slope 
of one. Measurement errors in X account for (A) 0% and (B) 50% of the 
observed variance in X. Measurement errors in Y account for 50% of the 
observed variance in Y in both cases.  

Can we avoid the Errors-in-X problem by relying on intensive 
study sites (e.g., AmeriFlux) with small measurement errors? 

• We performed a power analysis to determine the number of intensive 
study sites needed to accurately estimate the relationship between 
growth and mean annual precipitation within the eastern U.S. 

• Different hypothetical values of the “true” growth vs. precipitation 
slope were derived from LM3V and FIA data. 

• To have an 80% chance of estimating a slope within 20% of the true 
value requires at least 37 intensive study sites within the eastern U.S.! 

An unbiased alternative for model-data fusion 
1) Use Measurement Error Models to estimate the unbiased functional 

response of real ecosystems (e.g., response of growth to climate). 
2) Fit the functional response of the C-cycle model to the functional 

response estimated from data (rather than fitting C-cycle predictions 
to observations). Let fD(θ) and fM(θ) be the probability distributions 
of statistical parameters θ that describe the data and model 
functional responses, respectively. We seek to minimize the 
Kullback–Leibler divergence: DKL(fD||fM) = ∫ ln[fD(θ)/fM(θ)]fD(θ)dθ. 

LM3V appears too sensitive to precipitation and soil when Errors-in-
X are ignored, but not when Errors-in-X are accounted for. 
Figure 4. Response of aboveground biomass growth to temperature, 
precipitation, and soil available water capacity (AWC) estimated from 
FIA data and LM3V (baseline and optimized models). From left to 
right, the 6 growth responses are from: (1) ordinary least squares 
(OLS) analysis of plot-scale FIA data; (2-3) Measurement Error Model 
(MEM) analysis of plot-scale FIA data using temperature and 
precipitation error estimates derived from AmeriFlux sites and 
assuming 10% (“MEM10”) or 50% (“MEM50”) of AWC variance is due 
to measurement error; (4) OLS analysis of FIA data aggregated to 1° 
grid cells; (5) baseline LM3V model (shown in bold); and (6) LM3V 
with optimized parameter values (Table 1). 
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Figure 3. Grid-cell values in Fig. 2 vs. mean 
annual temperature and precipitation.  
Blue/red points have low/high values of soil 
available water capacity (AWC). LM3V appears 
too sensitive to temperature, precipitation, 
and AWC. The analysis is restricted to grid cells 
with ≥ 10 remeasured FIA plots in the 60-80 
year-old age class. 
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