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In general, continental shelves are thought to be important sinks| _ = FCO, = 40 (+ 14) x year - 80,846 (+ 28,356)
for CO, via consumption of dissolved inorganic carbon (DIC)| £ g
. : : : = —
from terrestrial/anthropogenic sources (1, 2) and trapping organic| &
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matter delivered to the coast via rivers (3). Marginal seas provide| 2 =
vital ecosystem services, such as fisheries habitats, ecotourism,| ~ ., S
and act as buffers to the open ocean trapping inorganic nutrients; o)
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yet it Is the close proximity to land that also makes these L
ecosystem move vulnerable to climate changes (4) and increased| <" | | | | | | £
anthropogenic CO,. Estimating coastal carbon budgets Is B
particularly challenging as CO, is difficult to model (5) and we are =
just beginning to understand the complex processes that influence S
CO, dynamics. Specifically, off the southeast US coast, In the >
South Atlantic Bight (SAB) this Is the longest continuous time
series analysis of coastal air-sea CO, fluxes (FCO,) to date.
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1. Estimate the annual net CO, source/sink. ' :
2. DEtermlne If the annual net source/sink . changing 5 .| | Figure 3. Annual net sum of FCO, flux normalized to the number of days
over time and what ProCcesses may contribute to = for which there are observations. While it appears that there Is an increase
iabili 5 - - |in the annual net sum over time, the trend (40 £ 60 mol m~ y1) is highly
variability. : . . : .
uncertain and may not be statistically different than zero. This uncertainty
H othesis 7 [is likely due to the low sample size (n = 8) and large variability. We do find,
yp - however, that the site switches between a source and a sink for CO.,,.
With increased pCO, concentrations at the GR mooring
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the potential CO, sink, of typical coastal margins, is likely ; : ! ? 5 ; ! T — . .
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decreasing. The most likely source of increased pCO, Is - - - ' : 3}r2=066;p <0.01;n=9
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activity. The dynamic terrestrial hydrologic cycle likely| @ gu g I I
Influences coastal CO, dynamics. O | " '
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l - ' ' Figure 4. Mean summer and winter FCO, (left), and the trend in summer
l Hai aertnz'te Slzz%(z?gn e 3 o FCO, (right); the mean winter trend is not significant. This analysis includes
e aric ° Daily mean pCO2, = underway observations from cruises in January, February, and August 2005.
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>Kno\fm re?aitionships“for relationship & stream flow ’ - [?ue_ t_o the Ia_lrge 95% confidence interval this t_rend may also -noI_be
outliers (SST & xCO,) | ‘l' 5 significantly different than zero due to low sample size and high variability.
»Remove biofouled data (xCO, This apparent increase reflects a summer increase in pCO2 (results not
& DO) TR -2 shown), and is likely due to supersaturation with respect to the atmosphere.
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year (ensemble mean) COnCIUSiOnS
Gap-filling | l - »GR mooring site switches from an annual net sink to a source.
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more than 2 missing three hour Calculate trends using linear least ; : Other studies have modeled this region as a net sink (12), this
measurements squares for all variables and 95% = however, may not be the case.
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Vg Sa Figure 2. Trend analysis for deseasonalized FCO, and potential contributing factors for the
length of the time series (red line) and before and after 2010.6 (green line). Over the course
of the time series there is a secular increase in pCO,,, (9.1 + 1.5 patm y!) and pCO,, (2.0 + What ’s next...
0.20 patm y1) and Altamaha River stream flow (51 = 29 m3 y1) as a proxy for freshwater - il
Input. Prior to 2010.6 there is an increase in Altamaha River flow, and SSS that could 1. Determm_e the sources of Va“ablllty of FCOZ at the
contribute to the pCO,,, increase during this time. By separating the influence of thermal GR mooring
versus non-thermal components of pCO,,, (10) Reimer et al. (in prep) determined that there| | 2. Determine the influence of extreme events (Storms,
was no thermal influence on pCO,, prior to 2010.6 even though there is a significant - _ -
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