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Evolving in-situ COEvolving in-situ CO22 Network Network

Figure 2: Continuous calibrated CO2 mixing ratio sites to be used for data
assimilation. Sites for which we currently have hourly data are in red. Sites for
which we anticipate data soon are in blue.

Figure 3: Daily minimum CO2 mixing ratio for 6 observing sites in 2004.

• 13 sites in 2005, maybe 20 by 2007 (NOAA?)

• Big synoptic variations and spatial gradients!



COCO22 Modeling in GEOS4 Modeling in GEOS4
• Offline coupling: SiB driven

by NDVI and GEOS
surface weather

• Hourly SiB fluxes
prescribed as LBC

• Offline tracer transport
using PCTM driven by
GEOS winds, convection,
and turbulence

• Reasonable variability at
seasonal, diurnal, and
synoptic time scales (r2 =
.66)
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Measured NEE of COMeasured NEE of CO22 (WLEF) (WLEF)

• Coherent diurnal cycles, but …
• Day-to-day variability of ~ factor of 2 due to passing

weather disturbances
• How to specify temporal autocorrelation in inversions?



COCO22 Asssimilation Asssimilation

• Fine-scale variations (hourly, 20-km pixels)
from weather forcing, NDVI as processed
by forward model logic

• Multiplicative biases (10-day, 100-km
pixels) derived by inversion of hourly [CO2]

FCO2 (x, y,t) = !R (x, y)R(x, y,t) − !A (x, y)A(x, y,t))

Ck ,m = !R,i, jRi, j ,nCk ,m,i, j ,n
* + !A,i, jAi, j ,nCk ,m,i, j ,n

*( )
i, j ,n
∑ ∆t f∆x∆y + CIN ,k ,m

where k = tower  number
m = sampling time
n = flux release time
i, j = source grid cells



Data Assimilation Set-UpData Assimilation Set-Up
Discrete stochastic-dynamic model

Dusanka Zupanski,  CIRA/CSU
Zupanski@CIRA.colostate.edu

Discrete stochastic observation model
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w k-1 – model error (stochastic forcing)

M – non-linear dynamic (RAMS-SiB-BGC) model

G – model (matrix) reflecting the state dependence of model error

kkk xHy !+= )(   :D

! k – measurement + representativeness error

H – non-linear observation operator (M M "" D D )
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(1) State estimate (optimal solution):
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(2) Estimate of the uncertainty of the solution:
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ENSEMBLE KALMAN FILTER or EnsDA APPROACH

In EnsDA solution is defined in ensemble subspace (reduced rank problem) !

KALMAN FILTER APPROACH

MAXIMUM LIKELIHOOD ESTIMATE (VARIATIONAL APPROACH ):

MINIMUM VARIANCE ESTIMATE (KALMAN FILTER APPROACH ):

DATA ASSIMILATION EQUATIONS:DATA ASSIMILATION EQUATIONS:



Mesoscale Ensemble CDASMesoscale Ensemble CDAS
(synthetic data experiment)(synthetic data experiment)

• SiB-RAMS weather, GPP,
respiration, atmospheric
[CO2]

• Sample model
atmosphere at 11 towers
each hour

• Estimate biases in GPP
and resp every 10 days on
100 km grid (5800 x
3800 km domain)

• Smaller ensembles ~
stable w/ covariance
localization and
5 ∆x smoothing
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Coupled Modeling and Assimilation SystemCoupled Modeling and Assimilation System
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Ring of TowersRing of Towers

• inexpensive
instruments
deployed on
six 75-m
towers in
2004

• ~200 km
radius

• 1-minute
data May-
August



Ring of Towers DataRing of Towers Data
mid-day onlymid-day only June 9- July 5, 2004June 9- July 5, 2004

Mid-Day CO2: June 9 - July 5
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Mid-Cont Intensive Plans?Mid-Cont Intensive Plans?

• Technical capability to do high-resolution
nested-grid simulations or assimmilations
for the MCI
– E.g., 10 km weather, NEE, CO2 over MCI domain

during growing season
– cloud-resolving (1-km) for ~ a week

• We are not funded to do this, but will
propose it to DOE TCO

• Detailed comparison to towers, flux
aircraft, MINT airborne data



Footprints from RUC-13Footprints from RUC-13

% ∆x = 13 km,
∆t = 1 hr

• Archiving u, v, w,
cloud flux, TKE
every hour for
whole domain

• LPDM for
NACP towers

• Infl function
generation via
web interface
available to all by
2007



Process-Based Fossil Fuel EmissionsProcess-Based Fossil Fuel Emissions
(K. Gurney, PI)(K. Gurney, PI)

• Combine inventory data and process attributes to construct
detailed space and time dependent emissions of fossil fuel CO2

and CO

• Database/model has three classes of inputs:
– Point sources (e.g., power plants, smelters)
– Mobile sources (vehicle emissions)
– Area sources (e.g., residential sources)

• Resolution: 36 km, hourly
 downscale from roads, points, lights, pop’n?

• Optimize parameters in emissions model(s) using transport in
RAMS and observed [CO]
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