Site-level synthesis of modeled and measured carbon, water, and energy fluxes across North America: Evaluation of model and measurement uncertainty

Please see printed program for author list...

Sponsors/Support: CCIWG, AmeriFLux, Canadian Carbon Program, Microsoft, and many other institutions
Site-level model-measurement synthesis: Objectives

• Starting at the spatial scale of individual sites, establish quantitative framework that allows NACP investigators to answer the question:
 – “Are the various measurement and modeling estimates of carbon fluxes consistent with each other - and if not, why?”
• Improve quantification of uncertainty for forward models and site-based measurements.
• Identify strengths and weaknesses in models and measurements.
• Migrate new knowledge up-scale in coordination with regional and continental-scale efforts.
Approach

• Anchor the comparison at flux measurement sites
 – Multiple years of energy, water and carbon fluxes
 – Ancillary physical and biological measurements
 (“template” exists, encourage site PIs to fill it in)
• Introduce additional data sources as available.
• Measurement teams produce their own best estimates of fluxes and flux uncertainty at each site.
• Modeling teams produce their own best estimates of fluxes and flux uncertainty at each site for each model.
• Evaluate overlap (or lack thereof) in confidence intervals to answer main science question: are the measurements and model predictions different?
Approach (cont.)

• Measurement – modeling synthesis
 – Multiple teams tackling several aspects of model-data comparison in parallel.
 – Initial focus on measurement uncertainty
 – Teams have flexibility to introduce additional statistical methods in the analysis, as needed.
 – Evaluation at multiple time scales:
 • Multi-year annual mean
 • Interannual variability
 • Seasonal
 • Synoptic
 • Diurnal
 – Workshop to initiate analysis
Current Status

• Sites
 – 36 first-priority sites
 – 11 second-priority sites (chronosequences)
 – 11 third-priority sites (incomplete ancillary data)
• First-priority sites: representation by veg type:
 – CRO(5), GRA(4), DBF(7), ENFB(4), ENFT(6), MF(3), WSA(1), SHR(1), TUN(2), WET(3)
Flux Tower Sites

NACP Interim Site Synthesis
First Priority Sites

- Initial 10
- First Priority

Scale: 1,000 to 5,000 Kilometers
Participating Models

- BEPS
- CNCLASS
- ISOLSM
- TECO
- ecosys
- SiBCASA
- SiB
- DLEM
- ED2
- LOTEC_DA

- DNDC
- SiBCrop
- can-ibis
- EDCM
- ORCHIDEE
- LPJ
- BIOME-BGC
- SSiB2
- TRIPLEX
- AgrolBIS

- Results from 20 models
- ~10 simulations per site
Flux measurement uncertainties

• Must consider both random and systematic uncertainties
• Systematic: here, consider effect of processing algorithms (other sources: advection, possibly energy balance closure, etc.)
 – Evaluate by comparing processing methods (e.g., u* threshold, gap filling algorithm, NEE/GPP/RE partitioning algorithm)
 – Gap filling uncertainty: across an ensemble of methods, ± 30 g C m⁻² y⁻¹ (95% CI, based on reanalysis of Moffat et al. 2007 results) at annual time step; ± 15% at half hourly time step
 – Flux partitioning: across an ensemble of methods, ± 10% for annual GPP, ± 15% for annual RE (95% CI, based on reanalysis of Desai et al. 2008 results); at half-hourly time step, algorithmic uncertainty is (approximately) a similar percentage of the estimated flux
Random uncertainties

Main source: turbulence sampling errors

- Evaluate using statistical analyses of measured fluxes (e.g., two tower, paired difference, model residual approaches; see Richardson et al. 2006, 2008)

- Non-Gaussian (Laplace distribution), standard deviation of uncertainty increases with flux magnitude (≈20% during day; ≈50% during night)

- Half-hourly uncertainties propagate to gap filled values, too. Random errors DO NOT “cancel out”: integrated uncertainty IS SIGNIFICANT at annual time step

- Integrated over year: ±10-40 g C m⁻² y⁻¹, at 95% confidence (depends on site characteristics, flux magnitude, and extent and timing of gaps)
Random Uncertainty in Net Ecosystem Exchange

(following Richardson et al. 2008, in comparison with NEEHat from the FCRN gap-filling method)
Random Uncertainty (95% CI) in Measured Annual Net Ecosystem Production vs. NEP
(following Richardson et al. 2008, NACP synthesis sites, FCRN gap-filling)
Random Uncertainty (95% CI) in Measured Annual Net Ecosystem Production vs. Ecosystem Respiration
(following Richardson et al. 2008, NACP synthesis sites, FCRN gap-filling)
Bootstrapping Estimates of Uncertainty (95% CI) in the Nighttime Low-\(u^*\)-Threshold

(NACP synthesis sites, annual analysis)
Sensitivity of Annual Net Ecosystem Production to Uncertainty in the u^*-Threshold

(NACP synthesis sites, FCRN gap-filling, annual u^* threshold)

Negative bias: -7 ± 10
Independent of NEP
Varies among sites
Multi-model comparison: diurnal cycle (Howland)
Multi-model comparison: diurnal cycle
(Howland, with model 95%CI)
Multi-model comparison: diurnal cycle
(Howland growing season mean)
Multi-model comparison: diurnal cycle (Howland growing season mean)
Multi-model comparison: diurnal cycle
(Howland growing season mean)
Multi-model comparison: seasonal cycle
(Howland, NEE)
Multi-model comparison: seasonal cycle (Howland, GPP)
Multi-model comparison: seasonal cycle
(Howland, Re)
Seasonal cycle NEE, multiple sites
Conclusions

• We’re about 50% of the way to a publishable analysis
• Building a valuable data and analysis resource for the broader community
• Highlighting many data and model quality issues along the way
• Better understanding of measurement uncertainty than model uncertainty
Conclusions (cont’d)

• Multi-model ensemble provides a useful way to analyze the structural component of model uncertainty

• Next steps:
 – Introduce disturbance history
 – Finalize measurement uncertainty analysis
 – Model parameterization uncertainty
Uncertainty at Diurnal Time Scale

Mead rain-fed corn-soy rotation site (Nebraska)
Conclusions

- Site Synthesis is a powerful dataset for model evaluation and improvement
- Many possibilities...