Modeling the effects of fire severity on boreal forest ecosystems in Interior Alaska

Genet H., Barrett K., McGuire A.D., Kasischke E.S., Rupp S., Turetsky M., Johnstone J., Mack M.C., Schuur E.A.G., Yuan F.M.
Introduction

The organic layer is of fundamental importance in boreal ecosystems for its influence in soil thermal and hydrologic regimes that determine (1) active layer dynamic and permafrost stability, (2) environmental conditions for regeneration.

(Kasischke and Johnstone 2005)

(Johnstone et al. 2010)
In the present study, we used a process-based modeling approach to examine the response of the organic layer depth to fire and how this response influences permafrost stability, carbon cycling and vegetation composition.
The set of observation:

- 178 sites dominated by black spruce in Alaska
- Data collected from 31 fire events between 1983 and 2005.
Assessing the relative impact of future warming and fire intensification on carbon balance and permafrost vulnerability.
Integration soil carbon deeper than 1m to better represent the potential effect of deeper active layer on soil C balance.
✓ Simulated relative OL reduction are significantly correlated with observations (n=76, p<0.01).

✓ The model reproduce the effect of local drainage on fire severity to the soil organic layer.
Conclusion

Model development

Data assimilation from fire scar observations allowed us to better represent the effect of drainage of the OL dynamic in TEM.

The integration of deep C (> 1m deep) is necessary to better represent soil C balance in regions susceptible to permafrost degradation.
The impact of the co-existing warming and fire intensification in black spruce boreal forest induce:
(1) A decrease of the organic layer depth.
(2) A degradation of the permafrost.

These two responses induce significant carbon loss in black spruce forest.
Conclusion

A thinner OL and fire intensification in response to future warming should result in a suitable environment for deciduous tree recruitment.

A key question is the degree to which increased productivity of deciduous forest offsets the carbon loss related to permafrost degradation.

(Johnstone et al. 2010)
Conclusion

Thank you!

hgenet@alaska.edu