Assessment of various background approaches for their use in deriving regional emissions from atmospheric data

Lei Hu,1,2 Stephen A. Montzka,1 Arlyn Andrews,1 Huilin Chen,1,3 Kenneth Masarie,1 Lori Bruhwiler,1 Ed Dlugokencky,1 Benjamin R. Miller,1,3 Colm Sweeney,1,3 Paul Novelli,1 Carolina Sisо,1,3 Pieter Tans,1 and James W. Elkins1

1NOAA Earth System Research Laboratory, Global Monitoring Division, Boulder, CO, USA. 2Research Associateship Programs, National Academy of Sciences, Washington D.C., USA. 3Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA. *leihu@noaa.gov

Motivation

With increasing concentrations of greenhouse gases in the atmosphere, efforts are being made to quantify their global and regional emissions. Relative to a global scale, greenhouse gas emissions on a regional scale are less certain and more difficult to quantify. Improvement in regional emission estimates would enable us to evaluate environmental policies associated with controlling greenhouse gas emissions from human activities.

The atmospheric data can be used to derive regional emissions via tracer-tracer correlation or inversion analysis, in some of which it requires estimation on the background or upwind concentrations. The goal of estimating accurate background is so that the derived enhanced concentrations can provide an accurate representation of the associated emission.

Various Approaches of Background Estimates

Approach (1): Using the lower 5th or 10th percentile of the atmospheric data.

Approach (2): Using the mean/median free tropospheric mixing ratios from aircraft measurements.

Approach (3): Using the surface background mixing ratios at sampling latitudes. Fig. 1 shows an example of global surface background mixing ratios of CH4, which were derived based on data from remote boundary sites across the globe (See Masarie and Tans (1995) for the detailed method).

Approach (4): Using the Lagrangian particle dispersion model (LPDFM) as a tool to sample the concentration of a studied gas at the boundary of a studied region (Fig. 2).

Comparison Between Background Derived from Different Approaches

Experiment 1: We used CO, CH4, HCFC-22 and HFC-134a as examples to examine the difference in their derived enhanced mixing ratios (ΔC = Cenh - Cmean) from various background approaches at West Branch, Iowa (WBI), USA (Fig. 3).

Fig. 3. Map of our North America monitoring sites. The “empirical curtain” stands for 2D background mixing ratios of various gases at the North America boundary. It was constructed using free tropospheric aircraft data from all North America aircraft sites, along with air back-trajectories.

Evaluation of Background Approach (4)

Table 1. Derived enhanced mixing ratios (ΔC) of CO, CH4, HCFC-22 and HFC-134a using observed and derived background mixing ratios from four different approaches.

Main findings from experiment 1:

- The sensitivity of calculated enhanced mixing ratios to the background varies among compounds (Fig. 4 and Table 1).
- The difference in derived ΔC from various background approaches is significant, suggesting, if the choice of background was inappropriate, it may result in significant biases in regional emission estimates.

Experiment 2: We chose a remote site at Estevan Point, British Columbia (ESP) (Fig. 3) to examine whether the background derived from approach (4) well represents the true background.

Our hypothesis:

If both curtain and transport are perfect, the derived ΔC at a remote site should be close to 0 and the correlation of ΔC between two anthropogenic species should collapse.

Fig. 4. Observed mixing ratios of CO, CH4, HCFC-22 and HFC-134a at WBI during 2008 - 2010 and their background derived from four different approaches.

Table 2. Derived enhanced mixing ratios (ΔC) of CO, CH4, HCFC-22 and HFC-134a using different approaches.

Main findings from experiment 2:

- The variability of observed concentrations cannot be completely explained by the background (Fig. 5).
- The correlation of ΔC between HFC-134a and HCFC-22 was improved when using approach (4) to derive background.

Experiment 3: We ran the transport model (HYSPLIT) back for 10 days and retrieved the particle locations at the end of 0, -1, -2, -3, -5, -7 and -10 days to examine in which scenario, the low mixing ratios in Fig. 5 can be best explained.

Fig. 5. Observed and calculated background mixing ratios of HFC-134a at ESP.

Main findings from experiment 3:

- Some of the low mixing ratios can be explained by running the model for a longer period. However, the overall variability of ΔC was not reduced (Table 2).
- The mean ΔC (the “bias”) increases as we retrieve the endpoint locations further back in time (Table 2). This raised a question about whether the “curtain” can not represent background concentrations at other longitudes or the mixing ratios at the end of -10 days are no longer representative for those observed at ESP.

Experiment 4: Instead of using the empirical “curtain”, we used 3D CH4 mixing ratios derived from a global inversion model (carbon tracker – CH4) to examine whether the “bias” observed during experiment 3 could be removed.

Table 3. Calculated enhanced mixing ratios (ΔC) of CH4 at ESP during 2010 – 2015 using background derived from the “curtain” and “carbon tracker-CH4”, along with particle locations at -1, -2, -3, -5, -7 and -10 days of the air back-trajectories.

Main findings from experiment 4:

- The increasing trend of the mean ΔC derived from various scenarios during experiment 3 was removed by using 3D CH4 mixing ratios from carbon tracker (Table 3 and Fig. 6).

Fig. 6. Observed and calculated background mixing ratios of CH4 within the marine boundary layer at ESP.

Conclusions

Main findings from experiment 4:

- The choice of background can influence the values of derived enhanced mixing ratios (ΔC) significantly. If ΔC was biased, it may result in a considerable bias in a regional emission estimate.
- We provided evidence that mixing ratios of a trace gas were relatively constant along an isotropic flow if there was no emission or loss during the transport. This suggests that background derived from approach (4) can well represent the true background if we have complete information about the transport and 2D background mixing ratios at the boundary of a studied region.