How old is the carbon that forests respire? Seasonal patterns in soil and ecosystem $^{14}\text{CO}_2$ from a hardwood forest in Northern Wisconsin.

Clerie L. Phillips1, Karis J. McFarlane1, Brian W. LaFranchi1, Ankur R. Desai2

1Center for AMS, Lawrence Livermore Natl Lab, 2Dept. Of Atmospheric and Oceanic Sciences, Univ of Wisconsin-Madison

Introduction

Radiocarbon (14C) is often substantially more abundant in soil CO_2 than in the atmosphere or plant respiration, making it a potential tracer for detecting soil contributions to whole forest respiration.

We conducted a coupled soil-atmosphere study of $^{14}\text{CO}_2$ dynamics at a deciduous forest in Northern Wisconsin, to assess whether soil emissions can be detected in atmospheric $^{14}\text{CO}_2$ abundance.

Questions:
1) How does soil-respired 14C-CO_2 vary seasonally at Willow Creek Ameriflux site? With environmental drivers?
2) Can signals from soil respiration be detected in canopy $^{14}\text{CO}_2$ using mixing equations?
3) How do whole-forest emissions impact $^{14}\text{CO}_2$ far above the canopy, at a nearby tall tower? (LEF, Park Falls, WI)

Approach

We monitored CO_2 fluxes and $^{14}\text{CO}_2$ abundance in 2011 & 2012, at three nested spatial scales.

1. Soil plots at Willow Creek (~4 m^2 footprint)

 - Four plot array, including one trenched (no live roots)
 - Subsurface $\text{CO}_2/^{14}\text{CO}_2$
 - Temp, Moisture
 - Surface fluxes (hourly)

2. Willow Creek Eddy Covariance Tower
 (30 m agl, 1 to 10 km2 footprint)

 - 14CO2 samples collected by NOAA-ESRL, analyzed at CAMS-LNL

3. LEF, Park Falls (450 m agl)
 ($^{14}\text{CO}_2$ samples)

Soil $^{14}\text{CO}_2$ Dynamics

1. **In situ** $^{14}\text{CO}_2$ in bulk soils was intermediate between the atmosphere and a trenched (heterotrophic) soil plot, reflecting contemporary 1C respired by roots.

 - Bulk soil: Increasing root contributions through summer decreases $^{14}\text{CO}_2$
 - Partitioned heterotrophic sources through time and by depth. Root incubations (not shown) were used for autotrophic end-member; and trenched plot $^{14}\text{CO}_2$ for heterotrophic end-member.

2. $^{14}\text{CO}_2$ dynamics through 2012 growing season seemed driven primarily by relative levels of root activity.

 - Mid-summer $^{14}\text{CO}_2$ concentration $= -60$ ppm

3. **In situ** $^{14}\text{CO}_2$ was enriched in $^{14}\text{CO}_2$ compared to lab incubations, because of high relative respiration rates in shallow subsurface where substrates are enriched 14C.

 - Even in the trenched plot without roots, $^{14}\text{CO}_2$ was contemporary throughout profile, and much higher than $^{14}\text{CO}_2$ produced by soils incubated in lab.

Can we detect soil $^{14}\text{CO}_2$ in whole-forest emissions?

4. Compared to background atmosphere (LEF), WCR CO$_2$ is enriched in ^{14}C, consistent with soil emissions

5. Two nocturnal canopy profiles in 2012 produced Keeling intercepts similar to soil $^{14}\text{CO}_2$

Can we detect soil $^{14}\text{CO}_2$ in regional emissions?

6. Many tall towers have shown lower $^{14}\text{CO}_2$ than free troposphere, related to fossil fuel emissions, but LEF has 14C enrichment during summer.

Conclusions and Future Directions

1. Soil $^{14}\text{CO}_2$ was distinct from the atmosphere. It was produced mainly from shallow substrates enriched in bomb-14C, and showed seasonal variation primarily related to root activity.

2. 14C enrichment above the forest canopy indicates soil contributions, but estimates of bomb HC in canopy-level emissions were quite variable.

3. Summer 14C enrichment at LEF may be partially related to elevated soil activity during summer.

4. Ongoing soil analysis includes modeling to assess the expected sensitivity of soil $^{14}\text{CO}_2$ to changes in SOM turnover.

5. Ongoing atmospheric work includes footprint analysis to constrain potential sources of summer $^{14}\text{CO}_2$ at LEF.