Blue Carbon Monitoring System

Linking Satellite and Soil Data to Validate Coastal Wetland 'Blue Carbon' Inventories: Upscaled Support for Developing MRV and REDD+ Protocols

Lead PI: Lisamarie Windham-Myers (18 Science PIS; October 2014-17)

Federal

<table>
<thead>
<tr>
<th>Agency</th>
<th>Name</th>
<th>Agency</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS</td>
<td>Brian Bergamaschi</td>
<td>U. South Carolina</td>
<td>Jim Morris</td>
</tr>
<tr>
<td></td>
<td>Kristin Byrd</td>
<td>U. Maryland/NOAA</td>
<td>Ariana Sutton-Grier</td>
</tr>
<tr>
<td></td>
<td>Judith Drexler</td>
<td>U. San Francisco</td>
<td>John Callaway</td>
</tr>
<tr>
<td></td>
<td>Kevin Kroeger</td>
<td>Florida Intl. U.</td>
<td>Tiffany Troxler</td>
</tr>
<tr>
<td></td>
<td>John Takekawa</td>
<td>Texas A&M U.</td>
<td>Rusty Feagin</td>
</tr>
<tr>
<td></td>
<td>Isa Woo</td>
<td>Independent</td>
<td>Stephen Crooks</td>
</tr>
<tr>
<td>NOAA-NERR</td>
<td>Matt Ferner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smithsonian</td>
<td>Pat Megonigal</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Don Weller</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lisa Schile</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Postdoc: James Holmquist</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA-JPL</td>
<td>Marc Simard</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Coastal Ocean: depth<200m

<table>
<thead>
<tr>
<th>Activity</th>
<th>Pg C yr(^{-1})</th>
<th>% ocean total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Production</td>
<td>6.5</td>
<td>12</td>
</tr>
<tr>
<td>Export Production</td>
<td>2.0</td>
<td>21</td>
</tr>
<tr>
<td>Burial</td>
<td>0.67</td>
<td>86</td>
</tr>
</tbody>
</table>

Sources: Brock et al. 2012; Nellesmann et al. 2009.

Figure 1 Blue carbon sinks

- Mangroves: 0.2
- Seagrasses: 0.3
- Salt marshes: 1.8
- Estuaries: 6.5
- Deep sea: 26.6
- Marine habitat area, million square kilometres: 330

Organic carbon burial rate, teragrams per year

- Maximum: 17.5
- Minimum: 0.0002
- Average: 1.8
Can LULC data be used for national GHG inventory? IPCC Stock Difference (1990-2010)

Can we reduce uncertainty by refining wetland categories? (vegetation type, biomass, elevation, salinity, sediment)
1. IPCC Wetlands Suppl. 2013 (Ch.4 Coastal)

Mangrove and Tidal Marsh Activities:
- CO₂ Forest management
- Extraction
- Drainage
- CH₄ Rewetting/Revegetation/Creation

2. REDD+ and US agency policies (soil C)

3. Market Incentives (VCS, ACR)
Wetlands 23 M ha

Palustrine (Fresh)

Estuarine (Saline)

IPCC Default sed burial = 3.2 Tg
(2.3Mha x 1.4T ha⁻¹ y⁻¹)
“Blue” CMS - Approach

Product 1: National Scale stock-based 30m resolution C pool maps (1992-2010) via NOAA’s C-CAP (NLCD) linked with regional SLR and SSURGO 1m soil data
“Blue” CMS - Approach

Product 1: National Scale stock-based 30m resolution C pool maps (1992-2010) via NOAA’s C-CAP (NLCD) linked with regional SLR and SSURGO 1m soil data

Product 2: Sentinel Site stock-based and process-based maps, where

- Field and remote sensing data availability (abundance and quality)
- Within-site range of tidal wetland categories
 - Salinity
 - Vegetation types
 - Landuse (degradation, restoration)
- Between-site range of climate variables
Product 1: National Scale stock-based 30m resolution C pool maps (1992-2010) via NOAA’s C-CAP (NLCD) linked with regional SLR and SSURGO 1m soil data

Product 2: Sentinel Site stock-based and process-based maps, where
- Field and remote sensing data availability (abundance and quality)
- Within-site range of tidal wetland categories
 - Salinity
 - Vegetation types
 - Landuse (degradation, restoration)
- Between-site range of climate variables

Product 3: Price of Precision Error Analysis (30m v 250m, Tier 1,2,3, Algorithms)
“Blue” CMS – Remote Sensing

Biomass (T ha⁻¹)

<table>
<thead>
<tr>
<th>Sensor</th>
<th>RMSE</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landsat8 (marsh)</td>
<td>3.3</td>
<td>14</td>
</tr>
<tr>
<td>SRTM (mangrove)</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>SSC (mg/L)</td>
<td>3.4</td>
<td>10</td>
</tr>
</tbody>
</table>

Simulation and data provided by Simard et al 2006 and Boss et al (in prep)
Once calibrated, relative elevation is used to estimate cumulative accretion, water depth, flooding frequency, aboveground and belowground biomass, and carbon stored.

“Blue” CMS – Process-based Model

From past and present, project future

Marsh Equilibrium Model (MEM 5.4):
mechanistic, annual cohort, 1D accretion

MEM-CH4: next version is methane capable
Synthesize validation data and metrics known to play a role in coastal carbon accretion. Evaluate what data sets, at what scale, are capable of improving C burial estimates.

GIS Model

Process-based Model

= verifiable protocol to support federal, international, and market incentives