Expanding the representativeness of eddy-covariance fluxes: Seeing the landscape for the footprint

Authors: Stefan Metzger1,2, Ke Xu3, Ankur R. Desai3, Jeffrey R. Taylor1,2, Natalsha Klijun1, Andrew Fox1,2, Peter D. Blanken5, Sean Burns5,6, Russell L. Scott7
(1) National Ecological Observatory Network, Boulder, USA, (2) University of Colorado, Boulder, USA, (3) University of Wisconsin, Madison, USA, (4) Swansea University, Swansea, Wales, UK, (5) University of Colorado, Boulder, CO, USA, (6) National Center for Atmospheric Research, Boulder, CO, USA, (7) United States Department of Agriculture, Tucson, AZ, USA

Background

Estimating the landscape-scale exchange of ecologically relevant trace gas and energy fluxes from tower eddy-covariance measurements is often complicated by surface heterogeneity. A tower eddy-covariance measurement may represent less than 1% of a grid cell resolved by earth system models (order 100–1000 km²). For confronting these models with carbon cycle observations, it is hence critical to address spatial representativeness.

Location bias

- Spatial average of flux η typically not available
- Surrogated with land cover information, and unknown relationship between land cover information and η
- Fails to quantify representativeness for spatial variation

Uncovering the flux field around eddy-covariance measurements

Before: Ameriflux Park Falls ‘very tall tower’ (447 m):
Eddy flux at 122 m.
Before: Ameriflux Park Falls ‘very tall tower’ (447 m):
Eddy flux at 122 m.

Credit: Matt Rydzik (U Wisconsin)

Environmental response functions

Flux grids

Sensible heat flux [W m⁻²]

Latent heat flux [W m⁻²]

Target area versus varying patch

- Tower never “sees” the same surface combination twice → location drift

Representativeness for mean and variation

- Flux grids allow quantifying probability of spatial representativeness at given significance level

Conclusions and outlook

- Observations not cheap, optimize data use efficiency (1% → 70–100%)
- “Calibration to the landscape”
- Unveiling the non-uniform fields of surface-atmosphere exchange
- Rigorous link to larger-scale mechanistic models
 - Model building
 - Data assimilation
- Technical advances
- Other transport modes…

Contact Information: smetzger@neoninc.org

www.neoninc.org