Why an NACP carbon cycle prediction synthesis activity?
Proposed logic

• C cycle forecasts, especially for terrestrial ecosystems, stink, **AND** aren’t obviously improving. (Friedlingstein et al 06, 14)

• **BUT** the NACP interim synthesis activities were very fruitful (see lots of publications, data sets, model-data syntheses and comparisons, etc)

• And we (the NACP) are creating a lot of good data that can be used to test prognostic models.

• **THEREFORE** a prognostic synthesis activity could greatly advance our ability to predict the future carbon cycle and show us more observations, experiments and models that would improve this field even more.
• True? Or am I wrong?
• If true, who wants to lead? What would the details be? How should we proceed?
• I have been trying to promote this idea, but I can’t get a group to pick up this ball and run with it. I’m not the guy to do this.
• Mstimip phase 2 funded. Models out to 2100. 7 core models, inviting participation from outside. Does this activity include vigorous model-data comparisons? Experimental and observational?

• Focus more on model development. What processes are critical? How can you tell?

• FACE and other manipulative experiments are a source for prognostic model evaluations.

• Comparisons alone are limited – need interpretation of the cause of the spaghetti.
• Do we have the data needed to evaluate these models? There is a gap in the data.
 – Inverse flux estimates?
 – Experiments
 – Flux tower records
 – Biomass carbon pool records, isotopic records
 – Define data performance benchmarks
 • Didn’t ILAMB do this? At a global scale? coupled carbon – climate models – not a focus specifically on terrestrial ecosystem models, for example.

• How do we fix the spaghetti?
 – Data assimilation
 – Model development
 – Model pruning
 – Model uncertainty characterization and model design
 – theoretical analyses of model structure.
• Interannual variability – difficult to reproduce.
• What is the appropriate spatial domain for model-data comparisons? (Multiple domains, likely, right?)
 – Regional level data are not available.
 – Site level data are available. Careful – one site doesn’t represent the globe or a region. Many sites? Atmospheric inversions? Joint parameter optimization using atmospheric and ecosystem data?
 – Extreme events provide opportunities for model evaluation.
• McGuire did this 20 years ago?
• Model sensitivity studies are a route to determining the critical observations or experiments needed to improve predictions.
• Predictive models – no observations of the future exist…working groups on model process development suggested. Soil carbon, dynamic vegetation, for example.
• Climate extremes are good test beds. Models need appropriate processes, including disturbance. And disturbance data.
• Existing climate change in the instrumental record can be used to test models. Flux towers, remote sensing data are regional. Remote sensing doesn’t cover all variables, but it is regional!

• Paleorecords.
synthesis

• Is more needed? Or are enough efforts already underway?
• How could we contribute most effectively?
 – Focused process working groups. Kevin worries about portability across models.
 – Site and regional tests with existing data of past climate events in the observational record (make benchmarks)
 – Participate in how to improve MsTMIP phase 2 – future runs will happen, including model comparisons, and comparisons to FACE. Plan for some comparisons to past events. Just starting.
 – Develop better regional data, and broader types of site data
 – Diagnose / solve spaghetti
 – Multiple, simultaneous data constraints
 – Relationships between data / observations...data connect to particular model processes and are linked.
 – Improve communications among modeling teams – tools to share resources, make models easier to run and share and develop. Like Mike Dietze said.
 – We should list data that are good to compare. What should we compare?
 – Advance model and data uncertainty quantification